\(\int (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx\) [1255]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 97 \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=-\frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 B \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

2*B*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
F(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4306, 3089, 2827, 2716, 2719, 2720} \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 B \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2),x]

[Out]

(-2*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*C*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3089

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {B+C \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\left (C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 B \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 B \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 \sqrt {\sec (c+d x)} \left (-B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+B \sin (c+d x)\right )}{d} \]

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2),x]

[Out]

(2*Sqrt[Sec[c + d*x]]*(-(B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + C*Sqrt[Cos[c + d*x]]*EllipticF[(c +
 d*x)/2, 2] + B*Sin[c + d*x]))/d

Maple [A] (verified)

Time = 43.75 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.55

method result size
default \(\frac {4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}-2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(150\)
parts \(-\frac {2 B \left (-2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}-\frac {2 C \sqrt {\left (-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(317\)

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2*(2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.28 \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {-i \, \sqrt {2} C {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} C {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, B \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*C*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*C*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*B*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 + I*sin(d*x + c))) + I*sqrt(2)*B*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x +
 c))) + 2*B*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F(-1)]

Timed out. \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right ) \,d x \]

[In]

int((1/cos(c + d*x))^(5/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2),x)

[Out]

int((1/cos(c + d*x))^(5/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2), x)